SYNOPSIS OF PRECAUTIONARY ASSUMPTIONS

GULF OF MEXICO DPEIS

Bob Gisiner, IAGC

Background p. 1

Summary of Precautions p. 2

Recommendationp. 3

Detailed List of Precautions .. p. 4-12

BACKGROUND

The BOEM Gulf of Mexico DPEIS is structurally very similar to most recent NEPA analyses for environmental risk from manmade sound in the marine environment. The interaction of the source, the propagation of the sound from source to animals, and the resulting sound exposures interact to produce a calculated estimate of effect, usually stated as MMPA Level A and Level B "takes", since the MMPA requires that the impact of an activity be quantified in those terms (NEPA and ESA do not have such strictly numerical requirements for estimating impact).

Historically and in this EIS, each element of the model is assessed relative to the available information and a value is selected that is considered sufficiently conservative or precautionary, given uncertainties about the scientific data or about natural variability in factors such as animal distribution, location and movement of the sound source or the sound propagating properties of the water column. Selection of conservative values in multiple steps of the model leads to an outcome that is not an average of the precautionary assumptions, or even an addition of uncertainty, but multiplication of each uncertainty by the uncertainty in the other steps. Simply put, doubling the expected value for four different parts of the model does not double the outcome, nor does it result in a 2+2+2+2 = 8-fold increase in the predicted outcome. Instead the effect of multiple precautions is multiplicative, and the outcome is 2x2x2x2 = 16-fold more than if the model was run with 'most likely' values like averages. Doubling all values out of precaution therefore does not predict an outcome of 200 takes when 100 was the most likely expected outcome, but instead produces an outcome of 1,600 takes.

As we will see from the following quick-look at the GOM DPEIS, there are many more variables in the model than the simple four variable example described above. And the levels of precaution are not simple doubling of expected values, but multiples that may range from addition of some percentage (less than doubling) to increases that are orders of magnitude greater than the "most reasonable" value (orders of magnitude are multiples of ten, such as 10, 100, 1000, etc.). The downstream consequences are also more complicated than the simple two times two example above, with some variables interacting in other than simple multiplicative ways.

For example, use of an 8000 cubic inch sound source rather than the mean or median of sizes actually used (5,600-5,100 cubic inches) would appear to only create a difference of about 30-37%, but that

ATTACHMENT A

behavioral aversion is a trigger for Level B take then it cannot subsequently be omitted from modeling of Level A takes, since the low level exposures that trigger aversion will reduce the likelihood of higher levels of exposure.

Additional aspects of threshold assessment that may lead to over-prediction of takes include:

- Conservative thresholds for low frequency whales. Current conservative thresholds for whales increase the estimated Level A and Level B takes for these species by some 4 to 10 times over best available science predictions. Arguments for unreasonable precaution in the face of uncertainty are not consistent with mammalian auditory biology in general.
- JASCO applied novel uses of weighting functions, using outdated M1 weighting functions from Southall et al (2007) on SPL thresholds, where weighting functions should not be applied.
- Kogia are considered to have the same hearing thresholds as porpoises, even though they are unrelated and the evidence for high sensitive is based largely on data about Kogia vocal behavior and some inconsistent evoked potential audiometry.
- Modifications to beaked whale Level B thresholds unique to this EIS are applied without justification other than precaution.

Mitigation.

BOEM allowed no reduction in the estimated take for mitigation. This is a highly over-conservative assumption, justified by the relatively little data available on mitigation effectiveness, together with the likely variability in mitigation effectiveness between mitigation service providers, types of marine species present, monitoring conditions and other variables. Some analysis on page D-151 suggests ranges of observer mitigation effectiveness from near zero to over 70%. One cannot require mitigation and at the same time treat it as if it provides no reduction in takes. BOEM needs to come up with some metric for the benefits from required mitigation. A variety of other possible mitigations have been proposed in the GOM DPEIS, ranging from alternative source technologies and active acoustic mitigation to time/area closures, vessel separation schemes, and reduced quantities of geophysical survey effort of 10-25%. At least two of the suggested mitigation measures, vessel separation (Table ES-1; page 1-10; page 2-10; B-32; page 2-38; and D-162-163) and shutdowns for dolphins approaching vessels or bowriding (p. 2-24) offer the possibility of actually increasing takes through expansion of ensonified areas (vessel separation), or extremely high increases in shutdowns with associated prolongation of survey effort (and sound exposure) to achieve survey completion (an estimated 35-40% increase).